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Abstract 

Many theorists argue that the probabilities of unique events, even real possibilities such 

as President Obama’s re-election, are meaningless. As a consequence, psychologists have 

seldom investigated them. We propose a new theory (implemented in a computer 

program) in which such estimates depend on an intuitive non-numerical system capable 

only of simple procedures, and a deliberative system that maps intuitions into numbers.  

The theory predicts that estimates of the probabilities of conjunctions should often tend to 

split the difference between the probabilities of the two conjuncts.  We report two 

experiments showing that individuals commit such violations of the probability calculus, 

and corroborating other predictions of the theory, e.g., individuals err in the same way 

even when they make non-numerical verbal estimates, such as that an event is highly 

improbable. 
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THE PROBABILITIES OF UNIQUE EVENTS 

Introduction 

Everyone from Aristotle to aboriginals engages in probabilistic thinking, even if 

they know nothing of the probability calculus.  In April 2012, we judged the probability 

that this paper would appear in PLOS ONE to be 0.1. For frequentists and evolutionary 

psychologists, who interpret probabilities as the limits on the frequencies of repeated ob-

servations, such a probability is meaningless [1-3].  It is has no obvious truth conditions, 

i.e., circumstances in which it would be true and circumstances in which it would be 

false.  But, for Bayesians, who interpret probabilities as degrees of subjective belief, our 

estimate is meaningful because individuals have beliefs about unique events and should 

naturally assign probabilities to them [4-7].  Various methods exist to test whether these 

estimates truly reflect an individual’s beliefs [4, 6].  In previous studies, notably those of 

Tversky and Kahneman [8] participants estimated the probabilities of unique events con-

cerning imaginary scenarios, such as: 

Linda is 31 years old, single, outspoken, and very bright.  She majored in 

 philosophy.   As a student she was deeply concerned with issues of discrimination 

 and social justice and also participated in antinuclear demonstrations.  

The participants ranked the probability that Linda is a feminist bank teller as higher than 

the probability that Linda is a bank teller.  The description is more representative of the 

former than the latter.  Frequentists retorted that such a flagrant violation of the 

probability calculus was a result of a psychological experiment that obscured the 

rationality of the participants, and that the norms of the calculus are relevant only to 

judgments about naturally occurring frequencies [1, 9]. 

 We show that naive individuals violate the probability calculus in simple 
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estimates of real possibilities, not just in scenarios contrived to elicit the use of the 

representativeness of a description as a guide to its probability. Previous studies have 

seldom examined estimates of such probabilities, e.g.: 

What is the chance that Obama is reelected President in November? 

As our theory predicts, they too lead to systematic errors. A major mystery about such 

estimates is the mental operations that underlie them, and an even bigger mystery is 

where the numbers come from and what determines their magnitudes.  To solve these 

mysteries, we developed a theory based on mental models [10, 11] and, unlike previous 

accounts of the psychology of probabilities, we have implemented the theory in a 

computer program that yields estimates of the probabilities of unique events.  The theory 

and its computer implementation predict the occurrence of violations of the probability 

calculus both in numerical and in verbal estimates of probabilities.  We report two 

experiments corroborating the theory’s predictions, and so we begin with a description of 

the theory. 

 

A theory and computational model of subjective probabilistic reasoning 

 Suppose that you are asked the question about the possible re-election of Obama; 

what estimate would you give?  At the time of writing, you are likely to estimate a 

probability of around 54% (as evinced in on-line betting sites, such as intrade.com).   A 

numerical estimate comes to mind quite readily for most individuals, but the process – 

according to the present theory – is quite complex, and depends on two separate 

components, an intuitive pre-numerical component and a deliberative component that 

carries out arithmetic and that maps intuitions into numerical estimates.  This sort of 
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distinction is familiar in “dual process” accounts of reasoning and decision making [12- 

16], which hark back to still earlier antecedents in Turing [17] and Pascal [18].  What 

distinguishes the present account, however, is that the distinction is drawn in terms of 

computational power, and that both the intuitive and deliberative systems have been 

implemented as part of a computational model of reasoning, mReasoner v. 0.9, which 

unifies deductive and probabilistic reasoning.  Its source code is available at:  

http://mentalmodels.princeton.edu/models/mreasoner/.  In what follows, we describe the 

theory and illustrate its workings with examples from the computer program. 

 The intuitive system constructs an iconic, non-numerical magnitude representing 

the strength of belief in a proposition. The first step in estimating, say, the probability of 

Obama’s re-election is to call to mind relevant evidence, such as:  

 Most incumbent US Presidents are re-elected.   

According to the theory, mental models represent possibilities [19, 20], and so the theory 

postulates that individuals build a single mental model of a set of individuals to represent 

this belief: 

incumbent re-elected 

 incumbent re-elected 

 incumbent re-elected 

 incumbent 

Each row in this diagram represents an incumbent, and so the first row represents an 

incumbent who is re-elected, as do the second and third rows, and the last row represents 

an incumbent who is not re-elected.  Mental models, of course, represent individuals, and 

we use words in the diagram above solely for convenience.  The absolute numbers of 
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individuals in the model are not fixed, and during inference they can be modified, or even 

tagged with numerical values, provided that the result does not contravene the meaning of 

the quantified assertion as embodied in a separate “intensional” representation [21]. The 

proportion of incumbents in the model who are re-elected represents the quantifier, most 

of the incumbents.  Models of quantified assertions of this sort are independently 

supported from evidence on how individuals reason from them [22]. Because Obama is 

an incumbent US President, the model can be sampled to yield an iconic representation of 

the probability of Obama’s re-election.  

 The intuitive pre-numerical system yields an analog magnitude monotonically 

related to the proportion of possibilities in the mental model in which Obama is re-

elected.  We refer to this system as “pre-numerical” because it uses a representation of 

numbers of the sort that is found in infants [23, 24], animals [25], and adults in non-

numerate cultures [26], but that continues to exist in adults in Western cultures too [27, 

28]. The computer implementation of the theory uses an internal representation that 

corresponds to a simple line within two boundaries:   

 |−−−−−−  | 

The left vertical represents impossibility, the right vertical represents certainty, and the 

proportional length of the line represents the probability of the event.  This representation 

can be translated into a verbal estimate, such as:  

 The re-election of Obama as US President is highly likely.  

 The theory assumes that individuals can draw from more than one source of 

evidence and accordingly alter their degree of belief.  Some evidence may already be in 

the form of a probability.  But, other evidence may not be, e.g.: 
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  Few Presidents during economic recessions are re-elected.   

The mental models of this evidence can also yield an analog representation: 

 |−−−     | 

In isolation this representation yields an evaluation of the re-election as improbable.  But, 

in the case that individuals adduce both pieces of evidence, how should they combine 

them rationally?  Those unfamiliar with the probability calculus do not know the answer 

to this question. 

 In general, given P(A|B) and P(A|C), the problem is to determine P(A|B&C).  For 

instance, if P(A|B) is 75% and P(A|C) is 33%, then what is the probability of P(A|B&C)? 

If no other information is available, then it is impossible to give a rational answer, be-

cause the probability can vary from 0 to 1. A rational estimate depends on an extension of 

Bayes’s theorem and therefore on gathering evidence about other probabilities.  But, na-

ive individuals do not have this knowledge.  So, how do they combine such estimates? 

 The answer to this question reflects a fundamental aspect of the pre-numerical 

system.  It has no access to working memory, and so it can hold at most one icon 

representing a belief [13, Ch. 6], and is capable only of simple pre-numerical procedures 

on iconic representations. Hence, without access to working memory, which allows for a 

potentially infinite number of states, the pre-numerical system has no more computational 

power than a finite-state automaton [29].  It is embodied in mReasoner and can repeat 

operations, but only a small finite number of times, and this constraint severely curtails 

the sorts of process that it can carry out on icons representing beliefs, e.g., it can multiply 

them only in a primitive way.  When two sources of evidence conflict, as in the case of 

Obama’s re-election, the pre-numerical system has a limited number of options in 
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resolving them.  Individuals unfamiliar with the probability calculus should tend to treat 

the conflict as calling for a compromise.  The program integrates the representations of 

the two degrees of belief by establishing a pointer, ^, to the second belief within the 

representation of the first: 

 |−−^−−−  | 

A simple computation of a compromise is to shift the pointer towards the right-hand end 

of the line and at the same time to shift the end of this line towards the pointer until they 

meet, i.e., the result of splitting the distance roughly halves it.  And the point where they 

meet is the new degree of belief that takes into account both pieces of evidence:    

 |−−−−^   | 

 An analogous problem occurs when individuals have to estimate the probability 

of a conjunction, P(A&B), such as: 

 What is the likelihood that US unemployment declines by several percentage  

 points this year and that Obama is re-elected President? 

Once again, the intuitive system has only a limited number of options in coping with con-

junctions.  One option is to treat them in the same way as separate pieces of evidence, 

that is, as calling for a compromise.  Hence, an icon representing the probability of the 

preceding conjunction, in effect, splits the difference between the intuitive probabilities 

of its respective conjuncts.  Some of our unpublished experiments suggest that this pro-

cedure is used for other sorts of compound assertions too, even inclusive disjunctions.  

Naive individuals confuse uncertainty with improbability: a disjunction creates uncertain-

ty, and so in error they take it to be more improbable than one or both of its disjuncts.   
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 Another option is available to the pre-numerical system, and embodied in mRea-

soner.  It can be illustrated in the case of a highly improbable estimate for a decline in US 

unemployment but a probable estimate for Obama’s re-election.  Individuals may be able 

to make an intuitive allowance for the relative improbability of the conjunction of both 

events.  The intuitive system accordingly allows a primitive finite form of multiplication 

in which the length of an icon representing one belief is used to take a proportion of an-

other.  Again, the system for making this estimate is limited to a small number of repeat-

ed operations.  

  In contrast to the intuitive system, the arithmetical system makes use of a work-

ing memory for the results of intermediate computations [29], and it maps analog magni-

tude representations of beliefs, such as: 

|−−      | 

into numerical values, such as: 25%.  Its conversions are subject to error, which is an 

inevitable consequence of mapping icons into a fine numerical scale. A corollary is that 

the mapping can err without yielding a conjunction fallacy, e.g., P(A) = 70%, P(B) = 

75%, and P(A&B) = 40%, which yields  P(¬A&¬B)  =  -5%. In other words, given 

estimates of P(A) and P(B), an estimate of their conjunction can yield a conjunction 

fallacy, or, even without such a fallacy, it can yield a negative probability as in the 

preceding case for P(¬A&¬B).  Dirac introduced negative probabilities into quantum 

mechanics, and some psychologists have argued that they have a role to play in 

accounting for errors in judgment [30].  But, in estimates of everyday events, they are 

straightforward errors: nothing is less probable than the impossible. 

Once individuals map iconic representations to numerical ones, they can in 
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principle hold the numerical estimates in working memory and make more sophisticated 

estimates of the probability of conjunctions.  If you estimate the chance of Obama’s re-

election as 60%, and the chance of an economic recovery in the USA as 40%, then you 

might take 60% of 40%, or vice versa, as your estimate of their joint occurrence. Such 

multiplicative estimates are in accordance with the probability calculus provided that the 

two events are independent – a condition that the Obama example violates, and so it calls 

for the computation of P(A) * P(B|A).   

The arithmetical system can try to keep track of the complete joint probability 

distribution (henceforth, the JPD), i.e., the respective probabilities of each of the 

exhaustive set of conjunctions between events. For instance, for two events, A and B, the 

conjunctions in the JPD are P(A&B), P(A&¬B), P(¬A&B), P(¬A&¬B), where “¬A” 

denotes that A does not occur.  The mapping from intuitive icons to a scale is more likely 

to yield a consistent JPD with a coarse scale than with a fine scale.  A slight jitter in 

mappings to a coarse scale should not tend to change categories from a consistent to an 

inconsistent JPD, whereas such a change is more likely with a fine scale.  This argument 

is corroborated in a Monte Carlo simulation.  A random assignment of values on a seven-

point scale for P(A), P(B), and P(A&B) yields a consistent JPD on about 40% of 

occasions, whereas a random assignment of values on a scale ranging from 0 to 100 

yields a consistent JPD on only 33% of occasions.  Hence, a coarse verbal scale for 

probabilities is biased to yield a greater proportion of consistent JPDs than a fine 

numerical scale. 

In sum, the theory makes four main predictions about the estimates of the 

probabilities of real but unique possibilities: 
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1. Participants from the same population have access to roughly the same sorts 

of evidence about real possibilities, and so their estimates should concur 

reliably. 

2. Estimates of the conjunctions of events should yield frequent violations of the 

JPD, where a violation is defined as a negative probability in at least one of 

the four probabilities that comprise the JPD, i.e., P(A&B), P(A&¬B), 

P(¬A&B), P(¬A&¬B). In the studies described below, reasoners estimated 

P(A), P(B), and P(A&B), and this triplet of estimates can be used to fix the 

probabilities that comprise the JPD. Other triplets can also fix the JPD. 

3. Violations of the JPD should be reduced if individuals have already made 

numerical estimates of the probabilities of the respective conjuncts, because 

these estimates allow them to use more sophisticated numerical estimates, 

such as taking a percentage of a percentage, i.e., a “multiplicative” estimate.  

Such estimates, of course, are irrational in the case that the two conjuncts are 

not independent. 

4. Violations of the JPD should also occur, but to a reduced degree, with a verbal 

scale of probabilities in comparison with a full percentage scale. 

We carried out several experiments to test these predictions, and report the two most 

important and representative of them, but their principal results have been replicated in 

other studies. 

 

Methods 

Experiment 1: Conjunctive probability estimates 
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 Experiment 1 tested three predictions: first, participants should concur in their 

estimates of the probabilities of unique events; second, their estimates should frequently 

violate the JPD; and, third, these errors should be reduced in favor of more sophisticated 

multiplicative procedure when participants have already made numerical estimates of the 

likelihoods of the conjuncts before they estimate the likelihood of their conjunction. 

 

Participants. 39 participants completed Experiment 1 for monetary compensation (a $10 

lottery) on Amazon Mechanical Turk, an online platform hosted on Amazon.com [31]. 

All of the participants stated that they were native English speakers. 

 

Design and procedure. Table 1 shows the contents of a typical trial.  For each problem, 

the participants provided three probability estimates concerning two unique events: P(A), 

P(B), and their conjunction, P(A&B).  On half of the trials, participants estimated the 

probabilities in the order P(A&B), P(A), and then P(B); and on the other half of the trials, 

they estimated the probabilities in the order P(A), P(B), and then P(A&B). They carried 

out 16 problems in total. Table 2 shows the contents of the problems, which were drawn 

from five different domains and concerned real unique possibilities in sports, science, 

economics, politics, and entertainment. In order to examine the possibility of systematic 

effects of contents, half the contents of the problems were such that in the conjunction A 

and B, A was likely to increase the probability of B, and in the other half, A was likely to 

decrease the probability of B.  This difference was established in a prior norming study of 

34 sentences. Hence, A and B were not independent events.  The order of the problems 

and the assignment of contents were randomized, and participants encountered a 
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particular content only once in the experiment. The participants were instructed that they 

were to make a sequence of sets of estimates of the likelihoods of events, and that they 

could take as much time as they needed. On each trial, the participants estimated sets of 

three probabilities.  The program administering the experiment presented each question 

separately, and it recorded the participant’s numerical estimate and its latency. 

 

Experiment 2: Verbal and numerical probability estimates 

Experiment 2 used the same method as the preceding experiment to test the theo-

ry’s prediction that an inconsistent JPD should occur in both verbal and numerical esti-

mates, but tend to be greater with numerical estimates because of the use of a finer scale.  

The verbal judgments were on a 7-point ordinal scale: Impossible, Highly improbable, 

Improbable, As likely as not, Probable, Highly probable, Certain. The numerical esti-

mates, as in the previous experiment, were of the chances out of 100, ranging from 0 

through 100 in integer steps. Participants made four probability estimates for each prob-

lem, and there were four forms of problem designed to mask the relation between the 

conjunctions and their conjuncts.  

 

Participants. 18 participants completed Experiment 2 for monetary compensation on the 

same online platform as in the previous study. All of the participants stated that they were 

native English speakers. 
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Design and procedure. To mask the relation between the conjunctions and their con-

juncts, participants made four probability estimates for each problem, and there were four 

forms of problem:  

P(A&B), P(A), P(B) 

P(¬A&B), P(¬A), P(B) 

P(A&¬B), P(A), P(¬B) 

P(¬A&¬B), P(¬A), P(¬B) 

In each case, there was a fourth judgment corresponding to the probability of a conjunc-

tion of the respective negations of the two propositions in the initial conjunction. As in 

the previous study, half the problems were those in which A increased the probability of 

B, and half the problems were those in which A decreased the probability of B.  The par-

ticipants carried out the estimates in two blocks of 8 problems, one verbal and one nu-

merical, and the order of the two blocks was counterbalanced.   Hence, there were 16 

sorts of trial as a function of the task (verbal or numerical), the four forms of problem, 

and the two sorts of relation between A and the probability of B.  Each of the 18 partici-

pants carried out one trial of each sort with different contents, which were presented in a 

random order.  The procedure and the contents of the problems were identical to those of 

Experiment 1 with the exception that each trial called for four sorts of judgment.  

 

Results  

Experiment 1: Conjunctive probability estimates 

 As Table 2 suggests, the participants concurred in the rank order of the probabili-

ties that they estimated for the P(A) events, for the P(B) events, and for their conjunction 
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P(A&B) (Kendall’s W’s = .33, .18, .20, respectively, p < .0001 in all three cases).  This 

result corroborates the theory’s first prediction: participants have access to evidence in 

common, which they adduce in making their estimates.  Overall, their estimates of 

P(A&B), P(A), and P(B) violated the JPD on 56% of the trials, and every one of the 39 

participants made one or more such estimates (Binomial test, p < .0001). Indeed, 27 out 

of 39 participants violated the JPD on 50% of trials or more (Binomial test, p < .025). 

These results corroborate the second prediction: violations of the JPD are frequent. Table 

3 presents the percentages of participants’ violations of the JPD, and the latencies of their 

estimates, depending on the two orders of the estimates.  The participants were more like-

ly to violate the JPD when the conjunction occurred first (62% of violations) than when it 

occurred last (51%; Wilcoxon test, z = 2.16, p < .025).  This result corroborates the third 

prediction.  The pattern of latencies in Table 3 shows that participants took longer to es-

timate the probability of a conjunction when it occurred first than when it occurred last 

(12.79 s vs. 7.55 s, Wilcoxon test, z = 4.76, p < .0001).  When the conjunction occurs 

first, they have to think about each event, and their conjunction; when the conjunction 

occurs last, they have already thought about each event and estimated their likelihoods, 

and so they need to think solely about their conjunction. 

Figure 1 presents scatterplots of the relations between the estimates of P(A), P(B), 

and P(A&B). Figure 1a shows the predictions of the computational model for the 

conjunctive probability given the participants’ estimates of the two conjuncts. The 

computational model (Figure 1a) yields a close fit to the data from Experiment 1 (Figure 

1b), and shows that individuals often tended to evaluate P(A&B) by splitting the 

difference between P(A) and P(B).  The R2 value for the fit between the theory and the 
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data was .76, p < .0001, and the root mean squared error (RMSE) was .14. When 

participants did not violate the JPD, they tended to multiply the two estimates of the 

conjuncts, and they did so on 28% of trials (and 27 out of 39 participants did so on at 

least 10% of the trials). We classified a set of estimates as using a multiplication strategy 

if two constraints were met. First, P(A&B) had to be less than or equal to P(A) and less 

than or equal to P(B). Second, the difference between the P(A&B) estimate had to be 

within 5% of the computed multiplicative estimate, P(A) * P(B). The multiplicative 

response would have been correct if the two events were independent of one another, but 

they were not. 

The study revealed an effect of content.  If event A decreases the probability of 

event B, then individuals should tend to make a lower estimate for the probability of both 

events than if event A increases the probability of event B.  A lower probability for the 

conjunction, in turn, is less likely to yield a violation of the JPD.  The results 

corroborated this effect:  a decrease in the probability of B yielded 52% violations, 

whereas an increase in its probability yielded 61% of violations (Wilcoxon test, z = 2.14, 

p < .025). After the participants had estimated the probability a conjunction, P(A&B), 

they might have supposed that the task of estimating the probability of a conjunct, P(A), 

called for them to estimate P(A&¬B). Even on this assumption, however, the participants 

violated the JPD on 49% of the problems (Wilcoxon test, z = 5.53, p < .0001). Moreover, 

the re-interpretation of the estimate of a conjunct, P(A), is very unlikely when the 

estimate occurs first in the problem, because the participants have yet to encounter the 

proposition, B.  The participants varied enormously in their tendency to make estimates 

that violated the JPD: the best participant in the experiment made no such estimates, 
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whereas the worst participate made only such estimates.  We suspect that the cause of 

such a vast divergence is the well-known difference from one individual to another in 

relying on intuition [14, 15] and perhaps in their familiarity with the probability calculus. 

 

Experiment 2: Verbal and numerical probability estimates 

Participants violated the JPD on 34% of their verbal judgments and on 68% of 

their numerical judgments (Wilcoxon test, z = 3.55, p < .0005) even though their verbal 

estimates were faster than their numerical estimates (65.9 s to estimate all four probabili-

ties vs. 85.1 s, Wilcoxon test, z = 3.33, p < .001).  These results corroborated the predic-

tion that violations should occur in verbal estimates, but at a reduced rate because of the 

relative coarseness of the scale. The four different sorts of problem yielded no reliable 

differences in participants’ tendency to yield inconsistent JPDs (Friedman test, χ2 = 4.19, 

p = .12), and the two different relations between A and the probability of B did not relia-

bly affect the tendency, either (Wilcoxon test, z = .16, p = .88). Figures 2a and 2b show 

scatterplots of the verbal and numerical estimates.  They too show that individuals have a 

predictable tendency to split the difference between the two probabilities in order to esti-

mate the likelihood of their conjunction (R2 = .31, p < .0001, and .67, p < .0001, and 

RMSE = .26 and .15, for the verbal and numerical estimates, respectively). 

 

Discussion 

The mechanisms underlying naive estimates of the probabilities of unique events 

are largely inaccessible to consciousness, but they are open to psychological 

investigation.  We proposed a model-based theory, which was designed to solve the 
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mystery of the mental operations underlying these estimates, and the deeper mystery of 

where the numbers come from and what determines their magnitudes.  Like other theories 

of judgment and reasoning [12-16], this theory distinguishes between an intuitive pre-

numerical system and a deliberative system capable of arithmetic.  But, unlike other 

accounts, the present theory distinguishes the two systems both in computational power – 

only the deliberative system has access to working memory – and in implementing them 

as part of a computer program.  This program, mReasoner, provides a unified account of 

deduction and probabilistic reasoning.  The intuitive system uses mental models of 

evidence to construct iconic representations of degrees of belief.  It can carry out only 

pre-numerical operations on these icons, such as splitting the difference between them, or 

at best using one degree of belief as a rough proportion of another – a primitive form of 

multiplication.  The iconic representations support only intuitive verbal descriptions of 

beliefs, such as: President Obama is likely to be re-elected. The deliberative system has 

access to working memory, and so it can map icons into numerical estimates, and it can 

multiply probabilities exactly.     

Two experiments corroborated the main predictions of this theory and its 

implementation. They showed that individuals tend to concur in the rank order of their 

estimates of the probabilities of unique events (prediction 1).  For example, they inferred 

that the US is much less likely to adopt an open border policy (mean estimate: 15%) than 

to make English the official language of the country (mean estimate 46%; see Table 2). 

The participants therefore share at least some common knowledge and systematic 

principles to make these estimates [pace 1-3]. They often estimated the probability of a 

conjunction of two unique events by splitting the difference between their estimates of 
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the probabilities of the two events (prediction 2).  For example, their mean estimate of the 

conjunction of the US adopting an open border policy and making English the official 

language was  26%, a value falling between their mean estimates of the two conjuncts 

(see Table 2).  Experiment 1 varied the order of the estimates, and violations of the JPD 

were reliable smaller when the conjunction came last as opposed to first (prediction 3).  

When the conjunction was last, the participants had already made numerical estimates of 

the probabilities of its conjuncts, and so they could use a deliberative procedure, such as 

taking a percentage of a percentage, i.e., a “multiplicative” estimate.  Such estimates, of 

course, are unwarranted in the case of the experimental materials because, as a prior 

study showed, the two conjuncts were not independent.  Experiment 2 compared purely 

verbal estimates with numerical estimates, and it showed that systematic violations still 

occurred, but to a reduced degree, with a seven-point verbal scale of probabilities in 

comparison with a full percentage scale (prediction 4). 

Could splitting the difference be an artifact, or a result of the participants merely 

guessing probabilities?  Two results suggest otherwise.   First, the reliable concordances 

of the estimated probabilities showed that the participants were relying to some degree on 

beliefs and procedures in common.  Second, the large and reliable increase in time to 

estimate the probability of conjunctions when these estimates occurred before the 

estimates of their respective conjuncts (in Experiment 1) showed that the participants 

were thinking in order to make their estimates, and thought nearly twice as long to 

estimate P(A&B) than to estimate either P(A) or P(B). 

 At present, no rival theories propose mechanisms for the estimates of the proba-

bilities of unique but real possibilities.  Critics might argue, however, that the role of 
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mental models and belief icons in yielding the present predictions is superfluous.  Any 

theory, whether it represented probabilities with vague verbal quantifiers, or precise nu-

merical values, could simulate the principles of the present theory and succeed as well in 

accounting for the results.  We have two reactions to this claim.  On the one hand, of 

course a theory might be formulated ex post facto to account for our results, but the 

strength of the model theory is that its principles emerge naturally from its unification of 

deductive inference and the representation of quantified assertions, such as: most incum-

bents are re-elected, and from its postulation of an intuitive system that lacks the compu-

tational power to cope with anything but pre-numerical representations and processes 

lacking full arithmetic.  Splitting the difference is one such option for accommodating 

both divergent evidence and conjunctions of divergent probabilities.  The principles em-

bodied in the theory and its computer implementation yield the four predictions that our 

experiments corroborated.  On the other hand, we can and have compared the model the-

ory with some other extant theories [32-34].  These theories were not framed for the 

probabilities of unique but real possibilities, but to account for results in experiments us-

ing assertions about hypothetical cases, such as: persons rarely possess gene x [32], esti-

mates of various attributes of a hypothetical individual described in a brief scenario [33] 

in the tradition of Tversky and Kahneman’s studies [8], and estimates of class-

membership, such as, the likelihood that a given butterfly is a Monarch [34].   Likewise, 

these studies were not intended to give an account of underlying mental processes or the 

origins of the numbers in estimates of probability, e.g., one theory posits that in estimat-

ing P(A&B) individuals tend to compare numerators and neglect denominators [34].  But, 

given the values of P(A) and P(B), two of theories [32, 33] provide formulas for predict-
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ing the value of P(A&B).  Table 4 shows that the computational implementation of 

mReasoner yields a better fit to the data than these formulas.  The system accounts for 

more variance because it is able to explain both of the strategies that participants tended 

to use, i.e., the split the difference strategy and the multiplicative strategy. 

One final issue warrants discussion.  Our experiments examined pairs of events, 

which a previous norming study showed were not independent of one another.  Hence, it 

is natural to wonder what would happen in estimates of the conjunction of independent 

events [cf. 32].  One methodological difficulty is that such conjunctions of real 

possibilities are unusual and seem quite odd, e.g.: 

What is the probability that a cure for Parkinson’s disease will be  

found in ten years and that Greece will leave the EU in the next ten years? 

The correct estimate in accordance with the probability calculus is to multiply the 

probabilities of the two conjuncts.  If participants could be persuaded that such questions 

are sensible, then they should be likely to consider each conjunct independently, and as a 

result to be biased towards a multiplicative response.  At present, mReasoner does not 

model the putative effects of A on the probability of B.  We manipulated the contents in 

the two experiments so that A raised the probability of B, or else lowered it.  The 

manipulation had the expected effect in Experiment 1, but not in Experiment 2, perhaps 

because of the use of negation in most of the problems.  Studies of class-membership 

show large effects of dependence [34], but its effects in judgments of real possibilities 

need further investigation.   

Frequentists argue that the probability calculus is inapplicable to the probabilities 

of unique events [1-3], and so violations of the JPD are not necessarily irrational. But, as 
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Bayesians reply, those who violate the JPD are vulnerable to a so-called “Dutch” book, 

i.e., a set of related bets in which they are bound to lose money if their bets reflect such 

violations [4, 6, 35]. Individuals often make bets on estimates of real unique possibilities, 

including the re-election of Obama, using so-called “prediction markets”, e.g., 

intrade.com, so it is in their interest to make rational probability estimates.  In conclusion, 

the present research shows that naive individuals readily provide both numerical and non-

numerical estimates of the probability of unique events, such as that Greece will be 

forced to leave the EU in the next ten years, and they show a reliable concordance in their 

estimates over different events.  So, they rely on a tacit and organized system for such 

estimates, which we have modeled computationally. More importantly, this model 

predicts a systematic tendency to split the difference in estimating the probability of 

conjunctions, and, as a result, to estimate a probability for them that violates the JPD.  

Our studies bore out the prediction. The phenomenon is robust and novel, because 

violations of the probability calculus have not previously been shown to occur in 

estimates of the probabilities of real but unique possibilities. It also corroborates our 

hypothesis that these probabilities derive from a system that uses a primitive non-

numerical representation of numbers akin to a system known to exist in infants and other 

animals.  

Acknowledgements 

We are grateful for helpful criticisms from Sam Glucksberg, Adele Goldberg, Hua Gao, 

Geoffrey Goodwin, Matt Johnson, Olivia Kang, Dan Osherson, and Laura Suttle.  We are 

also grateful to Vittorio Girotto, Michel Gonzalez, and especially Nuria Carriedo, for col-



23 
23 

THE PROBABILITIES OF UNIQUE EVENTS 

laborating with the third author in some preliminary studies of the probabilities of unique 

events. 



24 
24 

  

References 

1. Cosmides L, Tooby J (1996) Are humans good intuitive statisticians after all? Re-

thinking some conclusions of the literature on judgment under uncertainty. Cogni-

tion 58:1-73. 

2. Gigerenzer G, Hertwig R, van den Broek E, Fasolo B, Katsikopoulos KV (1995) 

“A 30% chance of rain tomorrow”: How does the public understand probabilistic 

weather forecasts? Risk Anal 25:623-629. 

3. von Mises R (1957) Probability, Statistics and Truth (Allen & Unwin, London). 

4. de Finetti B (1970) Logical foundations and measurement of subjective probabil-

ity. Acta Psychol 34:129-145. 

5. Jeffrey RC (2004) Subjective Probability: The Real Thing (Cambridge University 

Press, New York). 

6. Ramsey FP (1990) in F.P. Ramsey: Philosophical Papers, ed Mellor DH (Cam-

bridge University Press, Cambridge).  

7. Savage L (1972) The Foundations of Statistics (Dover, New York). 

8. Tversky A, Kahneman D (1983) Extension versus intuitive reasoning: The con-

junction fallacy in probability judgment. Psychol Rev 90:292-315. 

9. Gigerenzer G, Hoffrage U (1995) How to improve Bayesian reasoning without in-

struction: Frequency formats. Psychol Rev 102:684-704. 

10. Girotto V, Johnson-Laird PN (2004) The probability of conditionals. Psychologia 

47:207-225. 



25 
25 

THE PROBABILITIES OF UNIQUE EVENTS 

11. Johnson-Laird PN, Legrenzi P, Girotto V, Legrenzi M, Caverni J-P (1999) Naïve 

probability: A mental model theory of extensional reasoning. Psychol Rev 106:62-

88. 

12. Evans J St B T (2008) Dual-processing accounts of reasoning, judgment and so-

cial cognition. Ann Rev Psych 59: 255-278. 

13. Johnson-Laird PN (1983) Mental models. (Cambridge University Press, Cam-

bridge. Harvard University Press, Cambridge, MA) 

14. Kahneman D (2011) Thinking, Fast and Slow. (Farrar, Strauss, Giroux, New 

York) 

15. Stanovich KE (1999) Who is Rational? Studies of Individual Differences in Rea-

soning. (Erlbaum, Mahwah, NJ) 

16. Verschueren N, Schaeken W, d’Ydewalle G (2005) A dual-process specification 

of causal conditional reasoning. Thinking and Reasoning 11: 278–293. 

17. Turing A (1939) Systems of logic based on ordinals. Proc. London Math. Soc. s2-

45: 161-228. 

18. Pascal B (1966) Pensées (Penguin, London). 

19. Johnson-Laird PN (2006) How we reason. (Oxford University Press, New York). 

20. Khemlani S, Johnson-Laird PN (2009). Disjunctive illusory inferences and how to 

eliminate them. Mem & Cognition, 37: 615-623. 

21. Khemlani S, Johnson-Laird PN (2012) The processes of inference. Argument and 

Computation, 1–17, iFirst. 

22. Khemlani S, Lotstein M, Johnson-Laird PN (2012) Immediate inferences from 

quantified assertions. Under submission. 



26 
26 

  

23. Xu F, Spelke ES (2000) Large number discrimination in 6-month-old infants. 

Cognition 74:B1-11. 

24. Barth H et al. (2006) Nonsymbolic arithmetic in adults and young children. Cog-

nition 98:199–222. 

25. Meck WH, Church RM (1983) A mode control model of counting and timing 

processes. J Exp Psychol Anim Behav Process 9:320-334. 

26. Gordon P (2004) Numerical cognition without words: Evidence from Amazonia. 

Science 306:496-499. 

27. Dehaene S (1997) The Number Sense (Oxford University Press, Oxford). 

28. Carey S (2009) The Origin of Concepts (Oxford University Press, Oxford). 

29. Hopcroft JE, Ullman JD (1979) Formal Languages and Their Relation to Au-

tomata (Addison-Wesley, Reading). 

30. Pothos EM, Busemeyer JR (2012) Can quantum probability provide a new direc-

tion for cognitive modeling? Behavioral and Brain Sciences (in press). 

31. Paolacci G, Chandler J, Ipierotis PG (2010) Running experiments on Amazon 

Mechanical Turk. J Decis Mak 5:411-419. 

32. Wyer RS (1976) An investigation of the relations among probability estimates. 

Organ Behav Hum Decis Process 15:1-18. 

33. Fantino E, Kulik J, Stolarz-Fantino S, Wright W (1997) The conjunction fallacy: 

A test of averaging hypotheses. Psychon Bull Rev 4:96-101. 

34. Wolfe CR, Reyna V (2010) Semantic coherence and fallacies in estimating joint 

probabilities. J. Behav. Dec. Making 23: 203–223. 



27 
27 

THE PROBABILITIES OF UNIQUE EVENTS 

35. de Finetti B, Machi A, Smith A (1993) Theory of Probability: A Critical Intro-

ductory Treatment (Wiley, New York). 

 
  



28 
28 

  

 

 
Table 1. An example of a problem in Experiment 1, and its abstract form. Participants 

responded to questions 1-3 with numerical estimates ranging from 0 through 100.  

 

Question  Probability 
estimate 

1 What is the probability that a nuclear weapon will be 
used in a terrorist attack in the next decade? 

P(A) 

2 What is the probability that there will be a substantial 
decrease in terrorist activity in the next 10 years? 

P(B) 

3 What is the probability that a nuclear weapon will be 
used in a terrorist attack in the next decade and there will 
be a substantial decrease in terrorist activity in the next 
10 years? 

P(A&B) 

Note: A = nuclear attack, B = decrease in terrorism 



 
Table 2: The conjunctive events of the 16 contents for the problems in Experiment 1, and their respective mean percentage proba-

bility estimates.  The table presents the contents in which A decreased the likelihood of B, and then the contents in which A in-

creased the likelihood of B. 

Conjunctive events (preceded by “What is the probability that…”) P(A) P(B) P(A&B) 

Event A decreases likelihood of Event B    
     …the United States will sign the Kyoto Protocol and commit to reducing CO2 emissions and  
         global temperatures reach a theoretical point of no return in the next 100 years? 

47 42 44 

     …US companies focus their advertising on the Web next year and the New York Times 
         becomes more profitable? 

69 41 42 

     …intellectual property law in the US will be updated to a reflect advances in technology by the  
         year 2040 and Russia will become the world center for software development by 2040? 

54 24 27 

     …a nuclear weapon will be used in a terrorist attack in the next decade and there will be a 
         substantial decrease in terrorist activity in the next 10 years? 

39 27 26 

     …the United States adopts an open border policy of universal acceptance and English is legally  
         declared the official language of the United States? 

15 46 26 

     …Greece will make a full economic recovery in the next 10 years and Greece will be forced to   
         leave the EU? 

33 33 25 

     …scientists will discover a cure for Parkinson’s disease in 10 years and the number of patients  
         who suffer from Parkinson's disease will triple by 2050? 

39 32 25 

     …Honda will go bankrupt in 2012 and Ford will go bankrupt before the end of 2013? 19 23 15 

Event A increases likelihood of Event B    
     …a new illegal but synthetic drug becomes popular in the USA over the next two years and the  
         movement to decriminalize drugs doubles its numbers by 2015? 58 48 49 
     …3-dimensional graphics will be required to contain explicit markers to indicate their unreal 41 52 45 



30 
30 

  

         nature by 2020 and competitive video game playing will achieve mainstream acceptance by    
         2020? 
     …the Supreme Court rules on the constitutionality of gay marriage in the next 5 years and a gay  
         person will be elected as president in the next 50 years? 65 40 38 
     …a significant upturn in the economy occurs next year and Obama will be reelected President in  
         2012? 36 55 38 
     …in less than 15 years, millions of people will live past 100 and advances in genetics will end  
         the shortage of replacement organs in the next 15 years? 36 38 37 
     …space tourism will achieve widespread popularity in the next 50 years and advances in material  
         science will lead to the development of anti-gravity materials in the next 50 years? 34 40 36 
     …at least one head of state will be assassinated by 2012 and NATO will grant military support to  
         Arab Spring movements in several countries? 39 36 32 
    …intelligent alien life is found outside the solar system in the next 10 years and world 
        governments dedicate more resources to contacting extra-terrestrials? 20 18 17 

 

 



Table 3. The two different orders of estimates in Experiment 1, the percentage of partici-

pants’ violations of the JPD, and the latencies of participants’ estimates of the three dif-

ferent probabilities. 

 Percentage of 
violations of JPD 

Latency (in s) of probability estimates 

Order of estimates P(A) P(B) P(A&B) 

P(A), P(B), P(A&B) 51 8.46 7.53 7.49 

P(A&B), P(A), P(B) 62 6.47 5.84 12.77 
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Figure 1. 3D scatterplots of estimates of P(A), P(B), and P(A&B) and 2D scatterplots of 

estimates of P(A) and P(B) in Experiment 1. Panel A shows the estimates of 2000 

simulated runs of the computational model and its best fitting linear regression plane, and 

Panel B shows participants’ estimates. Participants’ estimates were separated by whether 

the estimate reflected zero, one, or two violations of the JPD. A violation was defined as 

a negative probability in the JPD extrapolated from the estimates. In the 2D scatterplots, 

estimates of P(A&B) correspond to the size of points such that larger points indicate 

larger estimates. 

 



Figure 2. 3D scatterplots of estimates of P(A), P(B), and P(A&B) and 2D scatterplots of 

verbal scale (Panel A) and numerical scale (Panel B) estimates of P(A) and P(B) in 

Experiment 2 (see Figure 1 for an explanation of zero, one, or two violations). 

Participants’ estimates were separated by whether the estimate reflected zero, one, or two 

violations of the JPD. A violation was defined as a negative probability in the JPD 

extrapolated from the estimates. In the 2D scatterplots, estimates of P(A&B) correspond 

to the size of points such that larger points indicate larger estimates. 
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Table 4. Model comparisons between mReasoner and two alternative models of probabil-

ity estimates (Wyer’s [32] equation 3a: {P(A)+P(B) / 2 + [P(A)*P(B)]}, and Fantino et 

al. [33] [P(A)+P(B) / 2] against the data from Experiments 1 and 2. 

 Model fits 

 R2 RMSE 

Experiment 1   
   mReasoner .75 .14 

   Wyer (1976) .65 .17 

   Fantino et al. (1997) .64 .18 

Experiment 2 (numerical)   
   mReasoner .67 .15 

   Wyer (1976) .53 .19 

   Fantino et al. (1997) .54 .19 

Experiment 2 (verbal)   
   mReasoner .31 .25 

   Wyer (1976) .22 .24 

   Fantino et al. (1997) .25 .24 

 
Note: All R2 values were significant, ps < .0001. 

 


